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The concept of a con®ned structure is introduced. The statistical properties of

the structure factors for such structures are derived and the main features of

the Patterson function are described. It is shown that the structure-factor

distributions for the con®ned structures coincide with those derived for the

rational index re¯ections of ordinary structures. Algorithms potentially useful

for protein crystal structure solution are identi®ed and checked via experimental

applications.

1. Symbols and notation

N: number of atoms in the unit cell

h: three-dimensional index with integral components

(h1, h2, h3)

p, q: three-dimensional indices with rational (integral

included) components (p1, p2, p3) and (q1, q2, q3), respectively

""", e: three-dimensional indices with even components

("1, "2, "3) and (e1, e2, e3), respectively

o: three-dimensional index with odd components (o1, o2, o3)

Fp = Ap + iBp = Rp exp(i'p): structure factor with vectorial

index p

P
1 �

PN
j�1

fj

P
2 �

PN
j�1

f 2
i

For brevity, the following papers will be denoted as papers

I±VI, respectively: Giacovazzo & Siliqi (1998); Giacovazzo,

Siliqi, Carrozzini et al. (1999); Giacovazzo, Siliqi, Altomare et

al. (1999); Giacovazzo, Siliqi & FernaÂndez-CastanÏ o (1999);

Giacovazzo, Siliqi, FernaÂndez-CastanÏ o & Comunale (1999);

Giacovazzo, Siliqi, FernaÂndez-CastanÏ o, Cascarano & Carroz-

zini (1999).

2. Introduction

Ramachandran (1969) ®rst conjectured about the possible use

of the Hilbert transform to solve the phase problem in crys-

tallography. He focused his attention on the following rela-

tionships:

A�p� � �ÿ3P

Z
S�

B�q�
�q1 ÿ p1��q2 ÿ p2��q3 ÿ p3�

dS� �1�

and

B�p� � ÿ�ÿ3P

Z
S�

A�q�
�q1 ÿ p1��q2 ÿ p2��q3 ÿ p3�

dS� �2�

from which

F�p� � �ÿi=��ÿ3P

Z
S�

F�q�
�q1 ÿ p1��q2 ÿ p2��q3 ÿ p3�

dS� �3�

arises. P denotes the Cauchy principal value of the integral, S�

the reciprocal space. Equations (1) and (2) are known in optics

as Kramer±Kronig relations. Ramachandran proposed a set of

equations that involve unknown derivatives and therefore

were of limited practical usefulness. The problem was revisited

by Mishnev (1993) who suggested applying the Shannon

sampling theorem (Shannon, 1949; Sayre, 1952) to reconstruct

F(p) from the values sampled at the Bragg reciprocal-lattice

points q. Zanotti et al. (1996) applied the Mishnev equations

(relating half-integral and integral index re¯ections) to extend

and improve the phase information.

A probabilistic approach to the problem was described in

papers I±VI, where the following probability distributions

were derived: (a) the density P�Fp� in P1 and in P�1 (papers I

and II, respectively); (b) the joint probability density P�Fp;Fq�
and, more generally, the joint densities P�Fp; fFqg�, where fFqg
denotes any in®nite or ®nite set of re¯ections (papers III and

IV); (c) the density P�jFpjjfjFqjg�, to obtain estimates of the

moduli of the half-integral re¯ections jFpj given the moduli of

the integral index re¯ections (paper V); (d) the densities

P�Fp; fFqg� for re¯ections of reduced dimensionality (paper

VI).

The outcome of the above probabilistic approach may be

summarized as: (a) unlike the Wilson distribution, the prob-

ability P�Fp� can provide an estimate of 'p together with the

corresponding reliability parameter; (b) for re¯ections of any

dimensionality, the phase and modulus of Fp may be estimated

given phases and moduli of the set fFqg. The method provides

also the corresponding reliability factors. When applied to the
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canonical case (p is then an integral component vector and q a

half-integral component vector, or vice versa), the formulas

encompass Mishnev relationships; (c) moduli of the half-

integral re¯ections can be evaluated by exploiting the moduli

of the standard re¯ections only.

Following the original ideas of Sayre (1952), a new

approach has recently been introduced in crystallography: the

reciprocal-space oversampling method. For non-crystalline

specimens it has been shown (Miao et al., 1998; Sayre et al.,

1998) that sampling the diffraction pattern of a ®nite specimen

at a spacing ®ner than Nyquist spacing generates a no-density

region surrounding the electron density of the specimen,

which may be used to retrieve the phase information. The

technique has recently been extended (Miao & Sayre, 2000) to

crystalline specimens, it does not require atomic resolution,

but imposes the measurement of the intensities between the

Bragg peaks. Such intensities are generally faint compared

with those measurable at Bragg points and weaken with the

size of the crystal. As a consequence, the technique is probably

practical only for small crystals and, additionally, imposes a

very high radiation dose, very unusual even for modern

crystallography techniques. In practice, the phase problem is

transformed into the radiation-damage problem (i.e. recording

all the diffraction peaks necessary for the success of the

method before the crystal is irreversibly damaged).

In this paper, we show that the study of the probability

distributions of the rational index re¯ections performed in

papers I±VI is strictly related to the method described by

Miao & Sayre (2000). In order to obtain such a result, we

develop the concept of the con®ned structure and we study the

related crystallographic properties. Furthermore, we are able

to obtain probabilistic estimates of the intensities not available

via diffraction experiments (i.e. the analogy of the non-Bragg

intensities for which the Miao & Sayre method imposes the

experimental measure). Our experimental tests can be

considered as a pilot study for assessing the level of accuracy

of the measurements for non-Bragg intensities necessary for

the solution of the phase problem.

3. The concept of the confined crystal structure

Let G be the space group of a crystal structure and US its

standard unit cell. It is usual to consider the atomic positions

as the primitive random variables for any probabilistic

approach aiming at stating the joint probability distributions

of the structure factors. The range over which the atomic

coordinates are allowed to vary are usually the following:

0 � x< 1; 0 � y< 1; 0 � z< 1:

Crystal structures for which the electron density is spread out

in the above interval will be denoted as ordinary structure

(OS) and �(r) will be their electron-density function.

Let us now double the length of the US axes. In the new cell

(say UC), the atomic coordinates will assume values half of the

previous ones and the structure will be con®ned to the subcell

de®ned by the following limits (see Fig. 1a):

0 � x< 1=2; 0 � y< 1=2; 0 � z< 1=2: �4�
No atoms will be out of these limits. We will refer to this case

as a con®ned structure (CS) and �0(r) will be its electron-

density function. The volume of UC is eight times larger than

the volume of US and the electron density is uniformly zero in

seven of the eight subcells. The change (from US to UC) in

direct space involves in the reciprocal space the duplication of

the indices of the re¯ections: so the (hkl) indices (relative to

US) will become (e1 = 2h, e2 = 2k, e3 = 2l) in the new reference.

While the (hkl) re¯ections completely de®ne the electron

density in US, the (e1e2e3) re¯ections are only 1=8 of the

re¯ections necessary to de®ne the electron density in UC.

The con®nement de®ned by the conditions (4) is not the

only one possible. For example, we can duplicate the lengths of

the US axes so that the atomic coordinates are con®ned in the

subcell (4), but we may additionally assume that the subcell

de®ned by the conditions (4) repeats identically in the

following subcells (see Fig. 1b):

0 � x< 1=2;

1=2 � x< 1;

1=2 � x< 1;

1=2 � y< 1;

0 � y< 1=2;

1=2 � y< 1;

1=2 � z< 1;

1=2 � z< 1;

0 � z< 1=2:

�40�

Also in this case, the electron density in the remaining subcells

is assumed to be identically equal to zero. In this case, UC

becomes an F-centred cell and the only non-systematically

absent re¯ections will have parity (e1, e2, e3) or (o1, o2, o3).

The above considerations suggest that one can freely

choose UC as an A-, B-, C- or I-centred cell by requiring that

the structure de®ned in the subcell (4) identically repeats in:

Figure 1
(a) Con®ned structures: the shadowed volume satis®es the conditions (4).
(b) An F-centred con®nement.



0 � x< 1=2; 1=2 � y< 1; 1=2 � z< 1;

for an A-centred cell,

1=2 � x< 1; 0 � y< 1=2; 1=2 � z< 1;

for a B-centred cell,

1=2 � x< 1; 1=2 � y< 1; 0 � z< 1=2;

for a C-centred cell,

1=2 � x< 1; 1=2 � y< 1; 1=2 � z< 1;

for an I-centred cell.

�400�

Other types of con®nement can be thought of, involving

triplication, quadruplication etc., of the axes of the US cell. In

fact, the larger the ratio UC=US the larger will be the computer

resources necessary to perform the calculations, unless

centred cells are used: a primitive con®ned cell with axes P

times those of an ordinary structure will have P3 more

re¯ections than the standard ones.

It may be worthwhile stressing that the crystal-structure

con®nement described in this paper is only a mathematical

expedient: actually such structures are not crystallochemically

consistent and therefore are unrealistic. Additionally, the

borders of the subcells where the electron density is allowed to

be different from zero involve discontinuity of the electron-

density function, incompatible with the presence of atoms on

the border. However, the idea of con®nement: (a) shows

features of non-negligible interest for the solution of the phase

problem; (b) has a real counterpart in nature when part of the

unit cell is disordered and therefore does not substantially

contribute to X-ray diffraction; (c) the problem of the

presence of atoms on the borders can be neglected at this

stage of the work, since for big crystal structures the percen-

tage of atoms lying on the CS cell border surfaces is very small

and it should not hinder the convergence of any phasing

algorithm.

4. The role of symmetry in the confined crystal
structures

In the following, we will essentially refer to a speci®c type of

con®nement: the axes of US have been doubled, the structure

is con®ned to the subcell (4), the electron density in the other

seven subcells is identically zero.

Let us indicate by rj = (xj, yj, zj) and by r0j = �x0j; y0j; z0j� =

�xj=2; yj=2; zj=2� the positional vectors of the jth atom in US

and in UC, respectively. Accordingly, Fh and F 02h are the

corresponding structure factors for the two structures. If fCsg =

fRs;Tsg is the set of symmetry operators characterizing the

space group of the OS, then

Fh �
Pm
s�1

Pt

j�1

fj expf2�ih�Rsrj � Ts�g

�Pm
s�1

Pt

j�1

fj expf2�i�2h�Rsrj=2� Ts=2��g;

where t is the number of atoms in the asymmetric unit and m

the number of symmetry operators. Then,

F 02h � Fh �5�
provided the set of symmetry operators fC0sg � fR0s;T0sg is

used, where R0s = Rs and T 0s = Ts=2. Since

FhRs
� exp�ÿ2�ihTs�Fh; �6�

using (5) into (6) gives

F 02hRs
� FhRs

� exp�ÿ2�ihTs�Fh � exp�ÿ2�ihTs�F 02h: �7�
The above results may be summarized as: the set of symmetry

operators fCsg � fRs;Tsg in US transform into the set fC0sg �
fR0s;T0sg when the unit cell UC is chosen. However, the set fC0g
only relates the re¯ections F 0 with index 2hRs to the re¯ection

F 0 with index 2h; no symmetry relations can be stated among

re¯ections F 0hRs
and F 0h if h 6� (e1, e2, e3). An analogous

behaviour was noted in paper IV for the re¯ection Fp, where p

is a vectorial index with at least one half-integral component.

The rationale is the following: the symmetry elements present

in the US cell are degraded in UC to local symmetry operators.

Accordingly, the space group of a CS is usually P1, except for

some symmorphic space groups. We show in Fig. 2, as exam-

ples of symmorphic groups for which the space-group

symmetry is maintained, the US and the UC cells when G is P2

and P4: the different location in UC of the symmetry elements

adds a translational component to the rotational matrix, i.e.

the symmetry-equivalent positions for P2 in UC are �x; y; z�,
��x� 1

2 ; y; �z� 1
2� so that F �h �k�l � Fhkl exp�ÿi��h� l�� instead of

the standard relation F �h �k�l � Fhkl.

By using the same arguments, the reader will easily verify

that, for the case G = P3, the symmetry degrades to P1 when a

CS is considered.

5. The distribution P(R, u) in P1

In this section, we will show that the distributions P�Rh; 'h� for

a CS coincide with the distributions derived in paper II for the

rational index re¯ections of an OS. Let us consider a three-

dimensional crystal under the following four assumptions: (a)

no symmetry element is present; (b) the N atoms constituting

the entire chemical content of the unit cell UC are con®ned in

the subcell de®ned by (4); (c) the electron density in the other

seven subcells is identically zero; (d) the atomic coordinates
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Figure 2
(a) The standard P2 space-group diagram; (b) the P2 diagram for the CS;
(c) the standard P4 diagram; (d) the P4 diagram for the CS.
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are randomly distributed in the subcell (4): they constitute the

primitive random variables of our probabilistic approach.

Then the characteristic function of the distribution

P�Ah;Bh�, say C�u; v� � hexp i�uAh � vBh�i may be written in

terms of the cumulants of the distribution:

C�u; v� � exp�i�uK10 � vK01� ÿ 0:5�u2K20 � v2K02 � 2uvK11��;
�8�

where u and v are carrying variables associated with Ah and

Bh, respectively. In their turn, the cumulants Kij may be

expressed in terms of the moments mrs of

P�Ah;Bh� :

K10 � m10 � hAhi;
K01 � m01 � hBhi;
K20 � m20 ÿm2

10 � hA2
hi ÿ hAhi2;

K02 � m02 ÿm2
01 � hB2

hi ÿ hBhi2;
K11 � m11 ÿm10m01 � hAhBhi ÿ hAhihBhi:

The calculation of the moments may be performed in accor-

dance with the following relationships:

hcos�2�hx�i � 2
R1=2

0

cos�2�hx� dx � ch=2

hsin�2�hx�i � 2
R1=2

0

sin�2�hx� dx � sh=2;

where ch � sin�2�h�=�2�h�, . . . , sh � �1ÿ cos�2�h��=�2�h�.
Accordingly,

hcos�2��hx� ky� lz��i � hcos 2�hx cos 2�ky cos 2�lz

ÿ sin 2�hx sin 2�ky cos 2�lz

ÿ sin 2�hx cos 2�ky sin 2�lz

ÿ cos 2�hx sin 2�ky sin 2�lzi
� cos���h� k� l�=2�ch=4ck=4cl=4 � ch;

hsin�2��hx� ky� lz��i � sin���h� k� l�=2�ch=4ck=4c1=4 � sh;

hAhi �
P

1ch; hBhi �
P

1 sh;

K20 � 0:5
P

2�1ÿ2c2
h�; K02 � 0:5

P
2�1ÿ 2s2

h�;
K11 �

P
2 chsh:

The Fourier transform of (8) gives

P�Ah;Bh� � �2��ÿ1�ÿ1=2 expfÿ�2��ÿ1�K02�Ah ÿ K10�2
� K20�Bh ÿ K01�2 ÿ 2�Ah ÿ K10��Bh ÿ K01�K11�g;

�9�
where � � �K02K20 ÿ K2

11�.
Equation (9) formally coincides with the equation (I.1),

derived in paper I for describing the statistical properties of

the rational index re¯ections in an OS. Consequently, the joint

probability distribution P�jFhj; 'h� and the marginal distribu-

tions P�jFhj� and P�'h� derivable from (9) for a CS will coin-

cide with the distributions (I.4) and (I.6), respectively. For

brevity they are not quoted here.

We specialize the probability distribution (9) for the few

cases of interest.

(i) At least one of the indices is even (and different from

zero). Then,

ch � c2h � sh � s2h � 0; K02 � K20 � 0:5
P

2

and the Wilson statistics hold. In this case fall the re¯ections

(eee), (oee), (eoe), (eeo), (eoo), (oeo), (ooe). For them, the

structure con®nement cannot provide phase distributions

other than the uniform distribution in the range (0, 2�).

(ii) All the three indices are odd. Then,

ch=4 � sin��h=2�=��h=2� � 2�ÿ1��hÿ1�=2=��h�;
ch � c2h � 0;

sh � ÿ8=��3hkl�; s2h � 0;

K10 � 0; K01 � ÿ8
P

1 =��3hkl�; K11 � 0;

K20 � 0:5
P

2; K20 � 0:5
P

2�1ÿ 128=��6h2k2l2��:
The structure con®nement destroys, for the (ooo) re¯ec-

tions, the uniform distribution of 2�hrj on the trigonometric

circle, so that the Wilson distribution does not hold anymore.

Since the parameters ch, c2h, sh, s2h coincide with the corre-

sponding parameters of the distribution P�Ap;Bp� derived for

an OS when p is a vectorial index with half-integer compo-

nents, the marginal distributions P�jFhj�, P�'h� and the

conditionals P�jFhjj'h� and P�'hjjFhj� will coincide with the

distributions (I.16), (I.17), (I.18) and (I.19), respectively.

Phases can be qualitatively estimated via

�'h�est � tanÿ1�K01=K10�: �10�

(iii) One of the indices is zero and the other two are odd

numbers [i.e. h = (0oo) or (o0o) or (oo0)]. In this case,

sh � s2h � c2h � 0; K01 � 0; K02 � 0:5
P

2; K11 � 0;

ch � 4=��2kl�; K10 � ÿ4
P

1 =��2kl�;
K20 � 0:5

P
2�1ÿ 32=��4k2l2��; if h � �0oo�;

ch � ÿ4=��2hl�; K10 � ÿ4
P

1 =��2hl�;
K20 � 0:5

P
2�1ÿ 32=��4k2l2��; if h � �o0o�;

ch � ÿ4=��2hk�; K10 � ÿ4
P

1 =��2hk�;
K20 � 0:5

P
2�1ÿ 32=��4k2k2��; if h � �oo0�:

Again, the Wilson distribution does not hold any more. The

parameters ch, c2h, sh, s2h coincide with the corresponding

parameters of the distribution P�Ap;Bp� derived for an OS

when p is a vectorial index with two half-integral components

and one zero component. This case has been treated in

paper VI.

(iv) Two of the indices are zero and the third is odd. Then,

ch � c2h � s2h � 0; K20 � 0:5
P

2; K11 � 0;

sh � 2=��h�; K10 � 0; K01 � 2
P

1 =��h�;
K02 � 0:5

P
2�1ÿ 8=��2h2��; if h � �o00�;

sh � 2=��k�; K10 � 0; K01 � 2
P

1 =��k�;
K02 � 0:5

P
2�1ÿ 8=��2k2��; if h � �0o0�;

sh � 2=��l�; K10 � 0; K01 � 2
P

1 =��l�;
K02 � 0:5

P
2�1ÿ 8=��2l2��; if h � �00o�:



Again the Wilson distribution does not hold any more. The

parameters ch, c2h, sh, s2h coincide with the corresponding

parameters of the distribution P�Ap;Bp� derived for an OS

when p is a vectorial index with two half-integral components

and one zero component.

The above results and, in particular, equation (10) indicate

that phase probabilities and, therefore, phase estimates for CS

are quite different from those valid for OS: consequently, also

their use in the phasing procedure has to be different.

6. The distributions P(Fh|{Fk})

In papers III and IV, distributions of type P�FpjfFqg� were

derived that are able to estimate, for the OS's, the modulus

and the phase of Fp given the moduli and the phases of the set

fFqg. Particular emphasis was given to the canonical case, in

which p is a half-integral index re¯ection and q is a standard

re¯ection, and vice versa. [The conclusive formulas were

denoted in paper IV as (CPR1), (CPR2), (CPR3), (CPR4).]

Analogous formulas were obtained in paper VI relating the

modulus and phase of a mixed type re¯ection p (i.e. one with

half-integral and integral indices) to the moduli and to the

phases of re¯ections belonging to speci®c sections of the

three-dimensional reciprocal space [see formulas denoted as

(MCPR5), (MCPR6), (MCPR7)]. The case of re¯ections with

reduced dimensionality was also considered.

In paper V, the probabilistic approach was further devel-

oped to explore whether the moduli of the half-integral index

re¯ections could be evaluated in the absence of phase infor-

mation; i.e. by exploiting the moduli of the standard re¯ections

only [see formula (V.20)].

The probabilistic results obtained in x5 suggests that each

distribution P�FpjfFqg� derived for an OS coincides, in a CS,

with a corresponding distribution P�FhjfFkg�. For shortness,

we will not give further details.

7. The Patterson function of the confined structures

Let us use the following notation:

(a) P(u) is the Patterson function for an OS and P0(u) is the

corresponding function for the CS;

(b) �0e�r� is the electron-density function of an OS calculated

by using only the e re¯ections. The periodicity of �0e�r� is half

the periodicity of �0�r�;
(c) �0(r) is a form function, with periods de®ned by UC,

equal to unity for (n1� x < n1 + 1=2, n2� y < n2 + 1=2, n3� z <

n3 + 1=2) and equal to zero elsewhere. n1, n2, n3 are integral

values.

Then,

P0�u� � �0�r� � �0�ÿr�; �11�
where

�0�r� � �0e�r� ��0�r�:

The Fourier transform of (11) may be written as

jF 0hj2 � T��0�r� � �0�ÿr��
� T��0e�r� ��0�r�� � T��0e�ÿr� ��0�ÿr��
� jF 0e �D0�h�j2

�
���P

e

FeD0�hÿ e�
���2: �12�

The relation (12) in more explicit terms becomes

jF 0hj2 �
P

e

jFej2jD0�hÿ e�j2

�P P
e1 6�e2

Fe1
D0�hÿ e1�Fe2

D0�hÿ e2�

�P
e

jFej2jD0�hÿ e�j2 �P P
e1 6�e2

jFe1
Fe2
j

� exp�i�'e1 ÿ 'e2��D0�hÿ e1�D0�hÿ e2�; �13�
where F and D0 are the complex conjugates of F and D0.

Equation (13) shows that the Patterson function P0(u)

cannot be calculated by using only the coef®cients jFej2:

indeed, the value of any jFhj2, for h 6� e, is not unequivocally

determined by the prior knowledge of the jFej2 but also

depends on the phase values f'eg. The above result was ®rst

stressed by Mishnev (1996), who instead of the function P0(u)

(i.e. the CS Patterson function) considered the autocorrelation

function of a single unit cell, and proposed its estimate by

using measured Bragg re¯ections and non-Bragg intensities

obtained via the discrete Hilbert transform.

In the absence of any a priori available phase information

(e.g. obtained by direct methods), we can assume that the 'e's

are uniformly dispersed. In this case, the following approxi-

mation holds:

jF 0hj2 �
P

e

jFej2jD0�hÿ e�j2: �14�

In order to clarify the role of (14) in our probabilistic

approach, we note that its use as a simpli®ed form of (13)

corresponds to the approximation

jFhj2 �
PN
j�1

f 2
j �

PN
j;k�1

fjfk exp�2�ih � �rj ÿ rk�� �
PN
j�1

f 2
j ;

which is usually made when the atomic positions are

completely unknown. However, (14) is more ef®cient than the

above approximation owing to the fact that it exploits the

prior knowledge that a large part of the CS unit cell is empty.

Of course, the prior knowledge of some vectors rj can improve

the too crude approximation jFhj2 �
PN

j�1 f 2
j , as well as the

prior knowledge of some phases would enable us to use (13)

rather than (14). In this paper, we will explore the case in

which no prior information is available besides the experi-

mental moduli.

In order to do this, let us now calculate the expression for D0

for a CS according to the conditions (4). We have

D0�h� � R1=2

0

R1=2

0

R1=2

0

exp 2�i�hx� ky� lz� dx dy dz � ch � ish;

from which
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jD0�h�j2 � c2
h � s2

h � c2
h=4c2

k=4c2
l=4

� sin�h=2

�h=2

� �2
sin�k=2

�k=2

� �2
sin�l=2

�l=2

� �2

:

Accordingly, the values of |D0(h)|2 for the different re¯ection

parities are given by:

if h � �o1o2o3� then jD0�h�j2 � 64�ÿ6�o1o2o3�ÿ2;

if h � �0o2o3� then jD0�h�j2 � 16�ÿ4�o2o3�ÿ2;

if h � �00o3� then jD0�h�j2 � 4�ÿ2oÿ2
3 ;

if h � �o1e2e3� or �e1o2o3� or . . . �e1o2e3� then jD0�h�j2 � 0:

Then (14) may be rewritten, for the different parities, as

follows:

jF 0o1o2o3
j2 �P

e

jFe1e2e3
j264�ÿ6��o1 ÿ e1��o2 ÿ e2��o3 ÿ e3��ÿ2

jF 0"1o2o3
j2 � P

e1e2e3

jFe1e2e3
j2jD0�"1 ÿ e1; o2 ÿ e2; o3 ÿ e3�j2

� P
e2;e3

jF"1e2e3
j2jD0�0; o2 ÿ e2; o3 ÿ e3�j2

� P
e2;e3

jF"1e2e3
j216�ÿ4��o2 ÿ e2��o3 ÿ e3��ÿ2;

valid also when e1 = 0;

jF 0"1"2o3
j2 � P

e1e2e3

jFe1e2e3
j2jD0�"1 ÿ e1; "2 ÿ e2; o3 ÿ e3�j2

�P
e3

jF"1"2e3
j2jD0�0; 0; o3 ÿ e3�j2

�P
e3

jF"1"2e3
j24�ÿ2�o3 ÿ e3�ÿ2;

valid also when e1 = e2 = 0.

The practical estimation of the jF 0hj2 may be quite long in

practice: indeed, each F 0 depends on the contributions arising

from all the jFej2. An alternative method, much faster and

more ef®cient, may be devised. Let us rewrite (14) as

jFhj2 � jF 0ej � jD�h�j2:
Its Fourier transform gives

P0�u� � P0e�u� � P��u�; �15�
where

P��u� �
R1=2

0

R1=2

0

R1=2

0

��r���r� u� dr: �16�

For each u, the function P��u� is the volume of the unit cell

which belongs both to ��r� and to ��r� u�. To help the reader

to evaluate the integral in (16), we return to the CS de®ned by

the conditions (4) and we consider ®rst the two-dimensional

case [i.e. �0�r� is con®ned to the subcell de®ned by 0� x� 1=2,

0 � y � 1=2]. It is evident that P��u� is the shaded area in Fig.

3(a). Analogously, for the three-dimensional case (see Fig. 3b),

P��u� is the volume common to the subcell de®ned by (4) and

to its shifted image. We note that, unlike �0�r�, the function

P��u� is no longer con®ned to the subcell de®ned by the

conditions (4): it reaches its maximum value at u = 0, where

P��u� � 2ÿ3, and is equal to zero when u1 and/or u2 and/or

u3 = 1
2. Simple calculations show that

P��u� � j�u1 ÿ 1
2��u2 ÿ 1

2��u3 ÿ 1
2�j; �17�

which for the two-dimensional case degrades to

P��u� � j�u1 ÿ 1
2��u2 ÿ 1

2�j: �18�
Equation (18) is depicted in Fig. 4. According to (17) and (18),

P0�u� is expected to be close to zero in a large central zone.

This expectation is legitimated by Figs. 5(a) and 5(b), where a

simple OS of four atoms and its Patterson map P�u� are

shown; the corresponding functions �0�r� and P0�u� are shown

in Figs. 5(c) and 5(d), respectively. To complete our analysis,

we state the expression for P��u� when

Figure 3
(a) Two-dimensional structure con®ned to the subcell
�0 � x< 1

2 ; 0 � y< 1
2�. The shaded area coincides with P��u�. (b)

Three-dimensional structure; con®ned according to the conditions (4).
P��u� is the volume in common to the two subcells.

Figure 4
P��u� for a two-dimensional con®nement.



(a) the con®nement is described by an F-centred cell:

P��u� � ju1u2�12ÿ u3� � u2u3�12ÿ u1� � u1u3�12ÿ u2�
ÿ �12ÿ u1��12ÿ u2��12ÿ u3�j;

(b) the con®nement is described by a C-cell:

P��u� � ju1u2�12ÿ u3� ÿ �12ÿ u1��12ÿ u2��12ÿ u3�j:
Expressions for the A-, B- and I-centred cells can be derived

by analogy. The relation (15) suggests a quite fast tool for

estimating the values of jF 0hj2 on the assumption of 'e's

uniformly dispersed: P0e�u� is calculated and then multiplied by

P��u�; by fast Fourier transform (FFT) of the modi®ed

Patterson map, the moduli jF 0hj2 are obtained.

8. Experimental tests

The new point of view introduced by the concept of the CS

suggests new phasing algorithms, faster than those exploited in

papers I±VI, and potentially useful for the crystal structure

solution. In this section, we will use the experimental data of

the protein M-FABP [Zanotti et al. (1992); space group

P212121, chemical composition C667N170O216S3, Z = 4, data

resolution up to 2.14 AÊ , 7589 measured re¯ections] for a pilot

study of the algebraic and probabilistic relationships provided

by the crystallography of the CS's. We will use four protocols.

Protocol 1. The experimental moduli and the published phases

of the (eee) re¯ections are used to estimate the moduli and the

phases of the re¯ections with different parity. The results will

be compared with the corresponding outcomes provided by

the probabilistic relationships obtained in paper V .

In accordance with x7, �0e(r) is calculated in UC; zeroing the

map in seven of the eight subcells and inverting it by FFT

provide the simultaneous estimate of re¯ections of any parity.

For the 219665 Fh re¯ections (with h 6� e) (this large number is

justi®ed by the fact that we are operating in P1), the average

error is h|�'|i = 28� and the discrepancy index R is 0.32, where

R �P
h

jjFhjtrue ÿ jFhjestj
.P

h jFhjtrue:

Ftrue is the true (calculated from the published crystal struc-

ture) structure factor and Fest is its estimated value.

17 s is the c.p.u. time necessary (Dell-Precision 530 Xeon

1.7 GHz workstation) for completing the entire process. On

the contrary, the estimation of only 31472 (ddd) re¯ections,

based on the formulas (CPR1) and (CPR2) of paper V,

requires 1753 s: in this case, h|�'|i = 32� and R = 0.33 (see

Table 2 of paper V).

Protocol 2. In order to check how the error in the phases 'e

degrades the reliability of the Fh estimates (with h 6� e), we

assign to them the MIR phase values (with average error equal

to 63� for 7355 re¯ections). The same algorithm described for

protocol 1 (we invert the positive part of the map) provides

h|�'|i = 66� and R = 0.53. If equations (CPR1) and (CPR2)

are applied, we obtain h|�'|i = 70� and R = 0.54.

Protocol 3. We try to estimate the moduli |Fh|2, with h 6� e,

from the moduli |Fe|2. In accordance with x7, the Patterson

function P0e�u� is calculated and then modi®ed via (15). The

Fourier inversion of the map will provide the |Fh|2 estimates.

The discrepancy index R is 0.42, much better than the value

0.53 (see Table 6 of paper V) obtained via the probabilistic

approach. The difference between the two results may be

ascribed to the mathematical dif®culties, described in paper V,

of obtaining a sensitive expression for hjFhjjfjFejgi from the

complicated distribution P�jFhj; fjFejg�i [see equation (13) of

paper V).

Protocol 4. We explore now some algorithms potentially useful

for the solution of the phase problem. If the measured

intensities of the rational index re¯ections are not available

for an OS (as in a standard diffraction experiment), the

simplest algorithm for solving the phase problem for a CS is

the following (Miao & Sayre, 2000).

(i) A trial (random, in the absence of prior information) set

of phases {'e} is associated with the measured set {|Fe|obs}, and

the electron-density function �0e�r� is calculated.

(ii) Since (see x7)

�0�r� � �0e�r� ��0�r�; �19�

the density outside the subcell to which the structure is

con®ned is driven to zero.

(iii) The Fh estimates are obtained by FFT (after having

imposed the positivity condition on the map). The Fe values to

be used in the next calculations are constituted by the

measured |Fe|obs moduli and by the calculated phases. For

re¯ections with index h 6� e, the structure factors to use in the
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��r� and P�u� are sketched in (a) and (b) for a simple two-dimensional
OS. The corresponding functions for the CS are shown in (c) and (d).
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next calculations coincide, in modulus and phase, with the

estimates provided by the FFT.

(iv) A new electron-density map is calculated, and steps

(ii)±(iii) are applied cyclically.

We used the above algorithm under different conditions.

Case (a): {'e} is a random set of phases, the moduli {|Fh|}

with h 6� e are those derived by the inverse FFT (i.e. they are

not those calculated by the known atomic positions). We used

a large variety of techniques for driving to zero the electron

density outside the subcell to which the structure is con®ned.

The algorithm never converged to signi®cant phases (at least

in several hundreds or few thousands of cycles).

Case (b): {'e} is a random set of phases, the moduli {|Fh|}

with h 6� e are supposed to be measured (actually, we have

simulated this experimental situation by using the calculated

non-Bragg re¯ections from the known atomic positions). In

this case, at step (iii) of the algorithm, after the application of

the inverse FFT, the |Fh| so-obtained are replaced by the

`observed' ones. The algorithm converges in a few thousands

of cycles (about 1800 cycles in the best run) to the average

phase error h|�'|i = 35� for the 7589 Bragg re¯ections. This

®nding con®rms the theoretical possibility of solving ab initio

protein structures, just knowing the intensities of non-Bragg

re¯ections.

Case (c): {'e} is the set of MIR phases, the moduli {|Fh|} with

h 6� e are supposed to be measured, as in (b). Even in this case,

at step 3 of the algorithm, the |Fh| with h 6� e obtained by the

inverse FFT are replaced by the `observed' values. The

algorithm reduces the phase error from 63� for 7355 re¯ec-

tions to 31� for 7595 re¯ections in 20 cycles;

Case (d): {'e} is the set of MIR phases, the moduli {|Fh|} with

h 6� e are those obtained by the inverse FFT. The algorithm

does not converge to signi®cant phases (at least in several

hundreds or a few thousands of cycles).

The outcome of the above tests may be interpreted as

follows: the amount of structural information contained in the

set {Fe} is entirely transferred into the set {Fh}. In particular,

the moduli Fh and the phases 'h critically depend on the

moduli and on the phases of e re¯ections. Random 'e values

(case a) will produce random 'h values and structurally

insigni®cant jFhj moduli: in the absence of some supplemen-

tary information, the phasing process would not converge.

Analogously, the absence of a supplementary constraint

cannot lead MIR phases (case d) to better values. The

assumed prior knowledge of the |Fh|'s constitutes (cases b and

c) a supplementary source of information independent of the

'e values and leads the phasing process to success.

The above considerations suggest that estimates (experi-

mental or statistical) of the |Fh| moduli, which are independent

of the current phase values, are a necessary (in some cases not

suf®cient) condition for the success of the phasing process. We

therefore planned three supplementary tests:

Case (e): {'e} is the set of MIR phases, the moduli {|Fh|} with

h 6� e are estimated as in protocol 1 (with discrepancy index

R = 0.32). This set of non-Bragg re¯ections, being determined

by Fourier inversion of the CS map, contains structural

information up to the experimental data resolution of 2.14 AÊ .

In this case, at step (iii) of the algorithm, after the FFT

application, the estimated values of the moduli |Fh| are

restored. By imposing the positivity condition, the algorithm

reduces the phase error from 63 to 36� in 45 cycles. On the

contrary, in the cases (b) and (c) discussed above, using the

non-Bragg re¯ection moduli calculated by the known atomic

coordinates, they contain a larger amount of information.

Case (f): {'e } is the set of MIR phases, the moduli {|Fh|} with

h 6� e are estimated as in protocol 3 (with the discrepancy

index R = 0.42). Again, at step (iii) of the algorithm, the

estimated values of the |Fh| moduli are restored. The algorithm

does not converge.

Case (g): {'e} is the set of MIR phases, the moduli {|Fh|} with

h 6� e are supposed to be measured, as assumed in (b). Even in

this case, at step (iii) of the algorithm the |Fh| with h 6� e
obtained by the FFT are restored with the `observed' values.

The only difference with respect to case (b) concerns the

centring of the CS cell: the total number of non-Bragg

re¯ections strongly changes as a function of different centring,

owing to the systematic absences. We have found that the

algorithm converges always, excepted the case of the

F-centred CS cell. It is worth noting that in this case we have

just one additional non-Bragg re¯ection [i.e. the (ooo)'s] in the

CS cell for each Bragg re¯ection [i.e. the (eee)'s] of the OS cell.

To summarize the above results: the test (e) suggests that,

even in the presence of a non±negligible error in the moduli

|Fh|, the phasing process may succeed. The test ( f) indicates

that estimates more accurate than those provided by the

inversion of the modi®ed Patterson map, obtained on the

assumption of 'e's uniformly dispersed, are necessary. Finally,

the test (g) seems to indicate that at non-atomic resolution of

the experimental data (such as in the considered example) it is

indispensable to have the ratio `number of non-Bragg re¯ec-

tions/number of Bragg re¯ections' larger than one in order to

compensate for the lack of information on the measured

standard re¯ections.

9. Conclusions

In this paper, we have established the crystallography of the

con®ned structures. We have shown that: (a) the statistical

properties of the structure factors of the CS are identical with

the properties stated in papers I±VI for the rational index

re¯ections of an OS; (b) the properties of the Patterson maps

of the CS may be used for estimating the moduli of the non-

measured structure factors; (c) suf®ciently good estimates of

such moduli constitute a supplementary source of information

useful for solving the phase problem in macromolecular

crystallography; (d) the present estimates of such moduli (by

inversion of a modi®ed Patterson map based on the assump-

tion of 'e's uniformly dispersed) are not too far from the

usefulness threshold.

The above results are also very important for the experi-

mental aspects connected to the method. Indeed, the experi-

mental measurements of the |Fh| moduli (with h 6� e) are

expected to be much less reliable than for the ordinary



structure factors because: (i) the intensities of non-Bragg

re¯ections are very faint; (ii) they are continuously distributed

in the reciprocal space for few-cell structures and, therefore,

decomposition techniques could be necessary to partition a

measured intensity into its components.

Consequently, it may be argued that supplementary efforts

would be necessary to make the measures of experimental

non-Bragg structure-factor moduli or its theoretical estima-

tions closer to the usefulness threshold.

The authors are grateful to Antonio Cervellino for very

useful discussions.
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